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Abstract— While non-negative blind source separation (nBSS)
has found many successful applications in science and engineer-
ing, model order selection, determining the number of sources,
remains a critical yet unresolved problem. Various model order
selection methods have been proposed and applied to real-world
data sets but with limited success, with both order over- and
under-estimation reported. By studying existing schemes, we have
found that the unsatisfactory results are mainly due to invalid
assumptions, model oversimplification, subjective thresholding,
and/or to assumptions made solely for mathematical convenience.
Building on our earlier work that reformulated model order
selection for nBSS with more realistic assumptions and models,
we report a newly and formally revised model order selection
criterion rooted in the minimum description length (MDL)
principle. Adopting widely invoked assumptions for achieving a
unique nBSS solution, we consider the mixing matrix as consist-
ing of deterministic unknowns, with the source signals following a
multivariate Dirichlet distribution. We derive a computationally
efficient, stochastic algorithm to obtain approximate maximum-
likelihood estimates of model parameters and apply Monte Carlo
integration to determine the description length. Our modeling
and estimation strategy exploits the characteristic geometry of
the data simplex in nBSS. We validate our nBSS-MDL criterion
through extensive simulation studies and on four real-world data
sets, demonstrating its strong performance and general applica-
bility to nBSS. The proposed nBSS-MDL criterion consistently
detects the true number of sources, in all of our case studies.

Index Terms— Dirichlet distribution, minimum description
length (MDL), model order selection, Monte Carlo integration,
non-negative blind source separation (nBSS).
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I. INTRODUCTION

NON-NEGATIVE blind source separation (nBSS), an
unsupervised learning problem to recover non-negative

source signals, has found many successful applications in
both science and engineering [1]–[4], and the frameworks for
addressing this problem have early roots in neural networks,
leading to the seminal nBSS method known as non-negative
independent component analysis [5]. Other popular nBSS
methods include non-negative matrix factorization (NMF)
[6]–[9], which is of great interest in machine learning [10],
and convex analysis of mixtures (CAM) [11], [12], which has
received attention from the Neural Networks and Learning
Systems (NNLS) community in recent years [13]. However,
model order selection [14], determining the number of sources,
remains a critical yet unresolved problem (just as estimating
the number of clusters remains a largely unresolved problem
in unsupervised data clustering)—it may be imperative to
achieve source separation (or clustering) solutions that closely
correspond to the underlying physical sources. In fact, even
many recent nBSS works published in TRANSACTIONS ON

NNLS unrealistically assume the number of sources is known
(see [13], [15]). Various model order selection methods have
been proposed and applied to real-world data sets, but with
limited success, suffering from either order over- or under-
estimation [14], [16]. By examining existing schemes, we have
found that these unsatisfactory results may be due to invalid
assumptions, model oversimplification, subjective threshold-
ing, and to assumptions made for mathematical convenience.

One group of model order selection methods is based on a
combination of eigenvalue analysis and sequential hypothesis
testing. The null hypothesis is that there is no significant
difference in explaining the observed data between two models
with different orders, and with a sequential search, the statisti-
cally significant alternative model with the minimum number
of sources is selected. Representative methods in this group
include Neyman–Pearson virtual dimensionality (VD) [16],
Bartlett test [17], geometry-based estimation of the number of
endmembers (GENE) [18], and principal convex hull analy-
sis [19]. While these methods perform well when the signal-
to-noise ratio is high, they require subjective thresholding on
the significance level, which is often data-dependent.

Another group of methods is rooted in information
theory, or more specifically the minimax entropy principle,
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without involving any subjective thresholding [20]. For
example, Akaike information criterion (AIC) [21] is an
unbiased estimator of Kullback–Leibler divergence between
modeled and estimated data distributions. AIC uses many
approximations and assumptions and thus is, in general, a
heuristic criterion [22]. Nevertheless, it has been proposed
to detect the number of sources in nBSS [23]. On the other
hand, the minimum description length (MDL) criterion
[and very similar methods such as the Bayesian information
criterion (BIC)] [22] is proposed to find the model most likely
in the Bayesian sense [24], [25]. MDL minimizes the total
description code-length, comprised of both the data likelihood
and the model complexity, over competing models. MDL
has been reformulated for detecting the number of sources in
various signal processing applications with consistent model
order estimation, where both sources and observations are
assumed to be stationary/identical and statistically independent
Gaussian random vectors with zero mean, and thus the family
of models is necessarily described by the corresponding data
covariance matrix [16], [26]. This MDL formulation has been
conveniently applied to detect the number of sources in BSS,
even when some of the assumptions were clearly violated [27].

To address the aforementioned problems, we reformulated
MDL-based selection specifically for nBSS and validated
its performance on both the simulated and real data sets.
We derived an MDL criterion to detect the number of tissue
compartments (i.e., the sources) in multitissue compartment
modeling and applied our method to analyze in vivo dynamic
contrast-enhanced magnetic resonance imaging of breast can-
cers, where the statistical model and related assumptions or
parameterization are well justified by the underlying phar-
macokinetics principles [28]–[30]. We also derived an MDL
criterion to detect the number of cell types in gene expression
data deconvolution and applied our method to computationally
dissect tissue heterogeneity in complex tissues [3], [31].

While our initial MDL approach for nBSS has shown
promising performance in determining the number of sources
in many real-world applications, here we report a newly and
formally revised nBSS-MDL model and model order selec-
tion criterion that is supported by comprehensive theoretical
analysis and experimental assessment, and which we will
experimentally demonstrate to have wide applicability to a
variety of different data types (one of the hallmarks of machine
learning approaches), with less likelihood of suffering from
overparameterization. Adopting widely invoked assumptions
for achieving a unique nBSS solution [3], [4], [11], [32], we
have previously shown that in a linear mixing model, when the
source signals are non-negative, the scatter simplex of source
signals is compressed/expanded and rotated to form the scatter
simplex of observed signals whose vertices coincide with the
column vectors of the mixing matrix, i.e., every observed
data point is confined within the simplex (a convex hull)
defined by the column vectors of the mixing matrix [3], [33].
Accordingly, in our nBSS-MDL model herein, we consider
the mixing matrix as consisting of deterministic unknowns,
with the source signals following a multivariate Dirichlet dis-
tribution [34]. Our modeling and estimation strategy exploits
the characteristic geometry of the data simplex in nBSS.

We derive a computationally efficient, stochastic algorithm
to obtain approximate maximum-likelihood (ML) estimates of
model parameters based on the connection between stochastic
ML estimation and the Craig estimator [35] over simplex
geometry. We then apply Monte Carlo integration to determine
the description length. We validate our nBSS-MDL criterion
through extensive simulation studies and demonstrate its per-
formance and applicability on four real-world data sets. The
proposed nBSS-MDL criterion consistently detects the true
number of underlying sources, in all of our case studies.

This paper is organized as follows. After the description
and formulation of the model order selection problem in
Section II, an MDL criterion for determining the number of
sources in nBSS is introduced in Section III. The estimation
of the model parameters and determination of the total code
length are presented in Section IV. Experimental results
that validate and illustrate the performance of the proposed
nBSS-MDL criterion on both synthetic and real-word data
sets are described in Section V. Major conclusions are
presented in Section VI. Detailed proofs and derivations are
summarized in the appendixes.

This paper adopts the following notations. ei is the i th unit
vector. 1N and 0N are all-one and all-zero N-vectors, respec-
tively. The convex hull, affine hull, and conic hull of a set S
are denoted by convS, affS, and conicS, respectively [36].
The relative interior intS of a set S is the interior of S with
respect to (w.r.t.) affS [36]. IZ � {1, . . . , Z}, for any positive
integer Z . � and � are the componentwise inequality and
strictly componentwise inequality, respectively.

II. FORMULATION OF THE PROBLEM

The observation vector in many nBSS problems such as
gene expression deconvolution [3], [37], hyperspectral remote
sensing (HRS) unmixing [33], [38], and multitissue compart-
ment analysis [28], [30], denoted by the M × 1 vector x[n],
can be accurately described by the following linear mixing
model:

x[n] =
K∑

k=1

aksk[n] + w[n], n ∈ IL (1)

where sk = [sk[1], . . . , sk [L]] is a 1× L signal profile referred
to as the kth source, ak is an M ×1 vector associated with the
kth source, w[·] is an M × 1 additive noise vector, K is the
number of sources, M is the number of samples (channels),
and L is the length of the signal profile. Using matrix-vector
notation, we can rewrite (1) as x[n] = As[n] + w[n], where
A = [a1, . . . , aK ] is the M × K mixing matrix; s[n] =
[s1[n], . . . , sK [n]]T is the nth K × 1 column vector of the
K × L source matrix S = [s[1], . . . , s[L]].

Within the context of nBSS, a crucial task associated
with the model described in (1) is determining the
number of sources K from a finite set of observations
X = [x[1], . . . , x[L]].

A promising approach to this problem is based on the
geometric structure of the scatter simplex of the source vectors
s[·] and its relationship to that of the observation vectors x[·].
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Fig. 1. (a) Resampled Dirichlet distribution with the parameter values esti-
mated from real gene expression profiles S of pure tissue types (GSE19830).
(b) Linear transformation of S produces a compressed/expanded and rotated
scatter simplex of X whose vertices coincide with the column vectors of the
mixing matrix A.

To introduce this approach, we make the following
assumptions.

(A1) A is of full column rank and L ≥ K .1

(A2) s[n] � 0K ,
∑K

k=1 sk[n] = 1, ∀n ∈ IL .

Here, (A1) is a widely adopted baseline requirement, and (A2)
nicely captures the unique geometric structure, i.e., the scatter
simplex, of the non-negative source vectors widely observed
in many nBSS problems [3], [4]. In (A2), the sources are
non-negative by nature in nBSS, while the full-additivity
1T

K s[n] = 1 can be easily enforced (see Remark 2 in
Section IV-E). Note that the simplex structure implied
in (A2), that is

s[n] ∈ {s ∈ R
K | s � 0K ,�K

k=1sk = 1} � Te (2)

has been widely adopted and has led to some seminal
NMF theories/methods in recent machine learning research
(see [42], [43] and the references therein). As a result, every
observation vector is confined within the simplex (a convex
hull) defined by the K column vectors of the mixing matrix, as
we have previously shown [3, Th. 1]. Fig. 1 shows the scatter
simplex of a benchmark real gene expression data set. In light
of Fig. 1, the assumption of s[n] being statistically independent
Gaussian random vectors with zero mean, previously used in
formulating MDL criteria for detecting the number of sources
[26], [27], appears to be invalid and thus unsuitable for nBSS.

By (A2), a valid probability model for s[n] should have the
domain Te [see (2)], i.e., the standard simplex (or probability
simplex) [36]. Given the fact that the well-known Dirichlet
distribution provides K degrees of freedom to fit the sources
on its domain Te, it is a very reasonable choice here and is,
therefore, adopted to model s[n]. Specifically, the Dirichlet
distribution is defined as in [34], with concentration parameters
α = [α1, . . . , αK ]T � 0K , that is

Dir(s; α) � �(α0)∏K
k=1 �(αk)

·
K∏

k=1

sαk−1
k , ∀s ∈ int Te (3)

1Note that (A1) does not assume non-negativity of A, which is not needed in
the ensuing theoretical development. However, A ∈ R

M×K is assumed to be
of full column rank, implying M ≥ K (i.e., there are more observed samples
than sources), which is well satisfied by a wide range of nBSS applications
[37], [39]–[41]. The possibility of extension for the underdetermined case
M < K is left for future work.

where �(α) �
∫ ∞

0 xα−1e−x dx , α0 �
∑K

k=1 αk , and s =
[s1, . . . , sK ]T . It is noted that the Dirichlet distribution has
been extensively studied, and there is abundant theory applica-
ble for effectively and elegantly deriving the induced MDL.
If a user has prior knowledge about the underlying distribu-
tion that is non-Dirichlet, then one should derive the MDL
based on such distribution—the order selection principle and
associated steps (to be developed next) should remain valid.
In the ensuing development, we will assume that s[n] can
be well modeled or approximated by a multivariate Dirichlet
distribution.

Assuming that the noise vector is from a stationary Gaussian
process, independent of the sources, with zero-mean and
covariance matrix given by σ 2IM , where σ 2 is an unknown
scalar constant and IM is the M×M identity matrix, it follows
that the probability density function (p.d.f.) for x[n] can be
derived in the following lemma.

Lemma 1: The p.d.f. of the random vector x[n],
w.r.t. the probability model parameterized by �(K ) =
[σ 2, aT

1 , . . . , aT
K , α1, . . . , αK ]T [see (1) and (3)], is given by

f (x|�(K )) =
∫

y∈dom h
g(x − y) · h(y) dy (4)

in which g(·) and h(·) are, respectively, the p.d.f. of w[n] and
x0[n] = As[n], that is

g(w) = 1√
(2πσ 2)M

· exp

(
−wT w

2σ 2

)
, ∀w ∈ R

M (5)

h(y) = J (K , A) · Dir(A†y; α), ∀y ∈ dom h (6)

where

dom h � int conv{a1, . . . , aK } ⊆ R
M (7)

is the domain of h(·) [int S denotes the relative interior
(w.r.t. affS) of the set S] [36], A† � (AT A)−1AT is the
Moore–Penrose pseudoinverse of A [44], and J (K , A) is the
scale factor such that

∫

y∈dom h
h(y) dy = 1; (8)

note that the measures associated with the integrals in both
(4) and (8) are the Lebesgue measure [45] w.r.t. aff(dom h) =
aff{a1, . . . , aK }.

The proof of Lemma 1 is given in Appendix B. Then,
assuming that x[1], . . . , x[L] are statistically independent
[26], [28], the joint p.d.f. of X is given by

f (X|�(K )) =
L∏

n=1

{∫

y∈dom h

J (K , A)√
(2πσ 2)M

· Dir(A†y; α)

· exp

(
−‖x[n] − y‖2

2σ 2

)
dy

}
(9)

where ‖ · ‖ denotes the Euclidean norm.
By (A1) and [3, Th. 1], it follows that the number of vertices

defining the scatter simplex of X is K , or equivalently, is equal
to the length of α defining the Dirichlet distribution of S.
The number of sources K can, hence, be determined from
the size of the smallest simplex of X. The problem is that
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the α defining the Dirichlet distribution of S is unknown
in practice. When estimated from a finite sample size, the
resulting concentration parameters are all nonzero, thus mak-
ing it difficult to determine the number of sources merely by
“observing” the simplex of X. In this paper, we pose the source
detection problem as a model order selection problem and then
formally derive an nBSS-MDL criterion.

III. MINIMUM DESCRIPTION LENGTH CRITERION

Given a set of L observations X = [x[1], . . . , x[L]] and
a parameterized family of probability densities f (X|�(K )),
the MDL criterion for model order selection, introduced by
Rissanen [24], selects the model that best explains the data.
Since each competing model can be used to encode the
observed data, the two-part code length version of MDL
selects the model that yields the minimum code length, given
by [24], [25]

MDL(K ) = − log
(

f
(
X | �

(K )
ML

)) + 1
2 D(�(K )) log(L)

where �
(K )
ML is the ML estimate of the parameter vector �(K ),

and D(�(K )) is the number of freely adjusted parameters
in �(K ). The first term is the well-known negative log-
likelihood given the ML model parameters, corresponding to
the code length for the data given the model. The second term
is the penalty on model complexity, which is the code length
for the model parameters.

Accurate detection of the number of sources via MDL heav-
ily relies on the suitability of the chosen family of competing
models under consideration. In our earlier work on multitissue
compartment modeling of in vivo dynamic imaging data, we
used the so-called latent variable model that was derived from
the underlying pharmacokinetics equations [28]–[30], where
A(λ1,2,3, β1,2, βep,k) (describing the time activity curves and
the tracer concentration in plasma) is parameterized by the
flux rate constants in tissue-type k ∈ IK−1. While the initial
applications of this modeling strategy have produced biologi-
cally plausible results, because of both A (parameterized) and
S being considered deterministic unknowns, when the number
of pixels L is large, the overparameterization associated with
treating S as parameters can potentially lead to an underes-
timate of the number of sources. In our other earlier work
on unsupervised deconvolution of tissue heterogeneity using
mixed gene expression data [3], [46], we considered the widely
adopted linear mixing model (before log-transform) [47],
where both A and S are considered as deterministic unknowns.
Again, when the number of genes L in S is large, it can lead
to an underestimate of the number of sources. Although we
have tried to parameterize S by gene clustering, the number of
clusters may still be too large and order underestimation may
still ensue. These approaches also require accurate estimates
of A and S, which may not be possible when the data are
noisy or the identifiability condition is not met [3], [12].

These earlier efforts motivate the consideration of a
parameterized statistical model for S (instead of consider-
ing S as model parameters) involving the Dirichlet distri-
bution and its useful properties uniquely suited to nBSS.

Specifically, our proposed MDL criterion can be expressed
as

MDL(K ) = − log
(

f
(
X | σ 2

ML, {ak,ML}K
k=1, {αk,ML}K

k=1

))

+ K (M + 1)

2
log(L) (10)

where the specific form of the likelihood function will be
detailed in the next section, and the terms independent of
K are omitted. While the Dirichlet distribution is not the
only parametric model for describing non-negative source data,
it captures the overall simplex data structure present in many
nBSS applications, leading to the highly successful model
order selection convincingly shown in our experimental results
on real benchmark data sets [3]. We have also opted not to
parameterize the mixing matrix A, because M, K 
 L in
many nBSS applications means the improved data likelihood
fit that comes from choosing all M K entries in A may
compensate [in (10)] for the descriptive penalty associated
with these parameters. Nevertheless, when sufficient prior
knowledge about the structure of the mixing matrix is avail-
able, appropriate parameterization should be explored as we
have done previously in modeling the pharmacokinetics of
contrast-enhanced dynamic imaging data [29].

IV. MAXIMUM LIKELIHOOD ESTIMATION AND

CODE LENGTH CALCULATION

The MDL criterion is based on the ML estimates of the
model parameters, but the ML estimator may need to be
approximated if it induces a computationally intractable opti-
mization problem. For the joint density function model given
in (4), obtaining locally optimal ML estimates for the parame-
ters will require a computationally complex joint optimization
procedure and is further complicated by the convolution inte-
gral in (4). For the sake of computational efficiency, here we
propose a greedy approximate ML estimation procedure, with
the parameters estimated sequentially, rather than jointly. This
greatly reduces the complexity of the parameter estimation
and, as will be shown, does not in practice compromise the
accuracy of the resulting MDL model order selection.

A. ML Estimation of the Noise Variance σ 2

To obtain the ML estimate of σ 2, we exploit the relation-
ship between the population covariance matrix �x[n], and its
unbiased estimate �̂x[n] � [1/(L − 1)] UUT given by [48],
where

U = [x[1] − d, . . . , x[L] − d] and d = 1

L
X1L (11)

as outlined in the following lemma.
Lemma 2 [48, Th. 2]: Let λ̃i be the i th eigenvalue of

�̂x[n], where λ̃M > · · · > λ̃1 with probability 1 (w.p.1). Also,
let λ1, . . . , λM ′ (M ′ ≤ M) be the eigenvalues of the population
covariance matrix �x[n], with mi denoting the multiplicity of
λi . Assuming that λM ′ > · · · > λ1, the ML estimate of λk is
then given by

λ
(ML)
k = L − 1

L mk
·

m1+···+mk∑

i=m1+···+mk−1+1

λ̃i , ∀k ∈ IM ′ . (12)
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From Lemma 2, the ML estimate of σ 2 is derived in the
following corollary.

Corollary 1: The ML estimation of σ 2 is given by

σ 2
ML = (L − 1) · (λ̃1 + · · · + λ̃M−K+1)

L · (M − K + 1)
(13)

where λ̃i is defined in Lemma 2.
The proof of Corollary 1 is given in Appendix A.

B. Estimation of a1, . . . , aK

To estimate {ak}, we first write the explicit form of its log-
likelihood function logL(A|X) according to (9) as

logL(A|X)

= Cσ 2 + L · log(J (K , A))

+
L∑

n=1

log

{∫

y∈dom h
Dir(A†y; α) · exp

(‖x[n]−y‖2

−2σ 2

)
dy

}

(14)

where Cσ 2 is a constant independent of A. However, the
resulting ML problem, that is

max
a1,...,aK ∈RM

log L(A|X) (15)

is difficult due to the complex, integral form of the nonconvex
objective function defined by (14).

Therefore, instead of directly solving the ML problem (15),
we reformulate it via some careful approximations and even-
tually approximate the ML problem by the following tractable
geometry problem, detailed in Appendix C:

ak,ML ≈ arg min
ak∈A(C,d)

vol(conv{ã1, . . . , ãK })
s.t. x̃[n] ∈ conv{ã1, . . . , ãK }, ∀n ∈ IL

ãk � C†(ak − d), ∀k ∈ IK (16)

where A(C, d) denotes the (K − 1)-dimensional affine hull
that best fits the data cloud in the sense of least-squares fitting
error [see (28)], in which C � [q1, . . . , qK−1] ∈ R

M×(K−1)

with qi ∈ R
M denoting the i th principal eigenvector (with

unity norm) of UUT [see (11) for the definitions of U and d],
x̃[n] is the dimension-reduced affine representation of x[n]
w.r.t. A(C, d) [11] [see (30)], and vol(·) denotes simplex
volume (cf. (34)).

The minimum volume simplex in (16) is known as the
Craig simplex in the nBSS context [35], and a fast alter-
nating direction method of multipliers [36]-based algorithm
developed in [49] can be used to solve (16). The vertices
of the Craig simplex approximate ak,ML well under certain
practical conditions. Specifically, we show the Craig estima-
tor (16) is theoretically equivalent to the ML estimator (15),
when the source density is uniform [i.e., condition 1) in
Theorem 1] [34], or when well-grounded points (WGPs)
exist [i.e., condition 2) in Theorem 1; readers are referred to
[28, Definition 3] for a rigorous introduction to the concept of
WGP], as outlined in Theorem 1 given below.

Theorem 1: Assuming (A1), (A2), and the noiseless case,
the problems (15) and (16) are equivalent when one of the

following conditions holds true: 1) α = 1K and 2) ∀k ∈ IK ,
there exists an n ∈ IL such that s[n] = ek .

The proof of condition 1) in Theorem 1 is given in
Appendix D. The proof of condition 2) in Theorem 1 follows
directly from the observation that the Craig simplex is uniquely
given by the data convex hull itself [under condition 2)], and is
omitted here due to space limitations. From our experimental
results on the benchmark real data sets, we have observed that
even when the data are noisy with nonuniform density α �= 1K ,
the Craig estimator can still well-approximate the simplex
structure of the data [50]. Practically, the {ak,ML} can also
be approximated using the clustered CAM under alternative
conditions [3], [29], [38], [50].

C. Estimation of Concentration Parameters α1, . . . , αK

The estimation of α = [α1, . . . , αK ]T , from a finite
set of source samples {s[1], . . . , s[L]}, can be obtained
using some benchmark techniques, including gradient
ascent search, the expectation-maximization (EM) algorithm,
and the Newton–Raphson method [51]. Here, a modified
Newton–Raphson method is used to estimate αML. An estimate
of standardized {s[1], . . . , s[L]} is first obtained by solving
the following fully constrained non-negative least squares
problem [52] [see (1) and (2)]:

ŝ[n] = min
s′∈RK

‖x[n] − AML · s′‖2

(17)
s.t. s′ � 0K , 1T

K s′ = 1

where AML � [a1,ML · · · aK ,ML]; note that (17) is a convex
optimization problem [36] and can be efficiently solved [52].

Then, the log-likelihood can be derived from (3) as

logL(α|̂S) = L log �(α0) − L
K∑

k=1

log �(αk)

+
K∑

k=1

(αk − 1)

L∑

n=1

log(ŝk[n]) (18)

whose gradient g and inverse Hessian H−1 (w.r.t. the reference
point αold) can be verified as

[g]k = L · 

(
1T

K αold) − L · 
([αold]k) +
L∑

n=1

log(ŝk[n])

H−1 = Q−1 − Q−11K 1T
K Q−1

(
L · 
 ′(1T

K αold
))−1 + 1T

K Q−11K

where 
(x) � (d log �(x)/d x) is the digamma function,

 ′(x) � (d 
(x)/d x) is the trigamma function, and Q is
a diagonal matrix with its kth diagonal entry being [Q]kk �
−L · 
 ′([αold]k). Then, the Newton–Raphson method can be
adopted to obtain a stationary point of (18) [53, p. 2] via the
following iterative updating rule [54]:

αnew = αold − H−1g. (19)

Note that as (18) is a unimodal concave function of α [51],
the only stationary point is its maximum [53, p. 2], so the
sequence generated by (19) must converge to the ML solution.



LIN et al.: DETECTION OF SOURCES IN NBSS BY MDL CRITERION 4027

Moreover, (19) can be initialized with an arbitrary α � 0K

[thanks to the concavity of (18)], and is computationally
very efficient since Q−1 in the inverse Hessian can be easily
obtained [thanks to the diagonality of Q].

D. Code Length Calculation

Based on the estimates of �(K ), the code length associated
with the MDL criterion [see (10)] can be theoretically deter-
mined. However, due to the complexity of the log-likelihood
term requiring a high dimensional integral [see (9)], an approx-
imation of this integral is proposed, which is computationally
efficient and exploits Monte Carlo integration [55].

We observe that the support of h(y|�(K )
ML ) (i.e.,

conv{a1,ML, . . . , aK ,ML}) is equivalent to the domain of
the integral, allowing a convenient adoption of Monte Carlo
integration. Accordingly, we recognize from Lemma 1 that

f (x[n] | �(K )) = EY[g(x[n] − Y) | �(K )] (20)

where EY[·|·] denotes the conditional expectation, and Y is a
random vector w.r.t. the p.d.f. h(y|�(K )

ML ). The integral in (9) is
then approximated using the sample average estimate of (20)

I (m)
n � 1

m

m∑

i=1

g
(
x[n] − yi | �

(K )
ML

)
(21)

where y1, . . . , ym are independent and identically distributed
(i.i.d.) generated by h(y|�(K )

ML ), and m is the (large) number of
trials (see the discussions in Remark 1 below). To generate the
sequence of yi in (21), we notice the one-to-one correspon-
dence between the standard simplex conv{e1, . . . , eK } ⊆ R

K

(i.e., the closure of the domain of Dirichlet distribution) and
the ML endmembers’ simplex conv{a1,ML, . . . , aK ,ML} ⊆ R

M

(i.e., the support of h(y|�(K )
ML )), under the linear mapping

defined by the matrix AML ∈ R
M×K . Thus, by (A1), one

can first generate an i.i.d. sequence s1, . . . , sm following the
Dirichlet distribution with parameter vector αML, and then
obtain the desired sequence y1, . . . , ym by linearly mapping
each si to yi � AMLsi . Note that we have to generate the
Dirichlet samples si , instead of using the readily available ŝ[n]
by (17), because ŝ[n] estimated from the real-world data set
may not be Dirichlet distributed as desired. Fortunately, the
Dirichlet random vector si can be efficiently generated in a typ-
ical numerical computing environment such as MATLAB, by
normalizing a K -vector whose kth entry is gamma-distributed
with shape parameter αk and scale parameter 1 [34]. The
proposed MDL algorithm is summarized in Algorithm 1.

E. Discussion

Before we finish this section, some analysis of the pro-
posed MDL algorithm, preprocessing strategies, and theoreti-
cal imperfection are discussed in the following remarks.

Remark 1: According to the Law of Large Numbers [56],
one can see that In � f (x[n] | �

(K )
ML ) = limm→∞ I (m)

n
[see (21)]. Moreover, by the central limit theorem (CLT), or,
more precisely, the Lindeberg–Levy CLT [56], one can show
that

√
m · (I (m)

n − In) converges in distribution to a zero-
mean Gaussian variable with the same variance as the random

Algorithm 1 Pseudo-Code for the MDL Algorithm
1: Given nBSS data matrix X.
2: for K = Kmin : Kmax do
3: Approximate �

(K )
ML = [σ 2

ML, aT
1,ML, . . . , aT

K ,ML,αT
ML]T

by (13), (16) and (19).
4: Generate i.i.d. sequence of si ∼ Dir(s; αML) and obtain

yi = AMLsi , ∀i ∈ Im .
5: Approximate − log( f (X | �

(K )
ML )) by (9) and (21).

6: Calculate MDL(K ) by (10).
7: end for
8: Output K̂ = arg min{MDL(K ) | Kmin ≤ K ≤ Kmax}.

variable g(x[n] − Y | �
(K )
ML ) [56], and hence, the error term

in the approximation of (21) (i.e., εm � I (m)
n − In) is of the

order O(1/
√

m), where a constant term independent of m is
dropped; note that we are analyzing how εm decreases as m
increases. Hence, for a desired precision ε, the required m is of
the order O

(
1/ε2

)
—the precision of the approximation in (21)

[for computing the code length of (20)] is solely controlled
by the number of trials m—a remarkable property of Monte
Carlo integration. To understand such efficiency, one should
note that to achieve a desired precision, the required m usually
grows exponentially with the dimension M if we use naive
approximation, such as by Riemann integration [57].

Remark 2 (Standardization of nBSS Data:) By (A2), the
full-additivity (i.e., 1T

K s[n] = 1) is assumed to validate the
adoption of the Dirichlet modeling, which elegantly captures
the simplex structure observed in many nBSS data. Although
full-additivity may not be satisfied by nature for some nBSS
applications, it can be easily enforced via a simple and
judicious preprocessing strategy, so that the proposed MDL
algorithm can still be applied. The technique is recalled here;
for illustration purpose, the noiseless scenario is assumed.
In particular, if full-additivity is violated (or not ensured), one
can standardize each x[n] to be

x[n] � x[n]
1T

M x[n] =
K∑

k=1

s̃k [n]ak (22)

where s̃k [n] � [(1T
Mak)/(1T

M x[n])] · sk [n] is the standardized
source vector and ak � ak/(1T

M ak). Now, the source vector

s̃[n] � [s̃1[n], . . . , s̃K [n]]T ∈ R
K

corresponding to the standardized data x[n] can be easily
shown to satisfy full-additivity, i.e., 1T

K s̃[n] = 1. The geomet-
rical meaning of (22) is to perform perspective projection [36]
of the data, which originally locate in the conic hull [36]

conic{a1, . . . , aK } �
{

x =
K∑

k=1

skak | sk ≥ 0, ∀k ∈ IK

}

onto the simplex conv{a1, . . . , aK }. This standardization pro-
cedure can be easily implemented and has been often used to
reveal the simplex structure of nBSS data (see the normal-
ization procedure performed in the non-negative dependent
source separation [11, eq. (4)] and the perspective mapping
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performed in pharmacokinetic analysis for prostate tumor
characterization [58, eq. (16)].

Remark 3 The Craig estimator is a very good approxima-
tion to the ML estimator of A when the sources distribute
uniformly enough on the standard simplex, or when WGPs
exist (by Theorem 1), but the two estimators are not equivalent
in general. Although it seems feasible to further improve the
ML estimate of A, e.g., by employing an EM algorithm,
this may result in a much higher computational complexity.
Fortunately, this does not seem necessary in our case studies.
Our experiments will demonstrate that the Craig estimator is
able to capture the simplex structure embedded in nBSS data.

Remark 4 For complex-valued A, we can stack its real
and imaginary parts as A = [AT

R, AT
I ]T ∈ R

2M×K (and
X = [XT

R, XT
I ]T ∈ R

2M×L is similarly defined). Then, it can
be verified that if (X, A, S) satisfies (A1) and (A2), so does
(X, A, S). In other words, the proposed MDL method can still
be applied (with input X), without affecting the efficiency of
Monte Carlo integration in the code length calculation (even
though the data size is doubled; see Remark 1).

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the superior efficacy of
the proposed MDL algorithm (i.e., Algorithm 1) using both
synthetic and real benchmark nBSS data. For performance
comparisons, three benchmark model order selection
algorithms, including Wax’ MDL algorithm [26], the
eigenvalue thresholding-based VD algorithm [16], and the
convex geometry-based GENE algorithm [18], are also used
to estimate the number of sources for these data sets; we
implemented Wax’s MDL algorithm, and the source codes for
VD and GENE were provided by their authors. Note that there
are two versions of the GENE algorithm: one estimating the
convex hull of the data (GENE-CH) and another estimating
the affine hull of the data (GENE-AH) [18]. Since GENE-CH
tends to overestimate the number of sources, we used the
GENE-AH version in our experiments [18].

In Theorem 1, we have proven that the Craig estimator is
equivalent to the ML estimator when the sources follow a uni-
form Dirichlet distribution. In our experiments on real-world
data sets, where the sources are estimated to be nonuniformly
distributed, the Craig estimator is still capable of capturing
the simplex structure embedded in the nBSS data under test,
as seen next.

A. Synthetic Data With Isotropic Gaussian Noise

In this section, we evaluate the performance of the proposed
MDL algorithm using synthetic data sets composed of K = 5
sources. Specifically, the source vectors s[n] ∈ R

K are i.i.d.
generated following the Dirichlet distribution with parameter
α = 1K [see (3) and (A2)]. Then, the sources are used
to generate L = 1000 noise-free synthetic data x0[n] �
As[n] according to the nBSS model in (1), where the mixing
matrix A of M = 100 bands is randomly generated with each
entry normally distributed by N (0, 1), which enforces (A1)
w.p.1. Finally, we add i.i.d. zero-mean Gaussian noise w[n]

with variance σ 2 to x0[n] for different values of SNR defined
as

SNR �
∑L

n=1 ‖x0[n]‖2

σ 2 M L
. (23)

For each SNR ∈ {0, 5, 10, 15} (dB), we synthesized
50 synthetic data sets that were then processed by Wax’s
MDL algorithm [26], the VD algorithm [16], the GENE-AH
algorithm [18], and the proposed MDL algorithm [with
the number of trials set to m = 1000 in the Monte Carlo
integration; see (21)], respectively. As the VD and GENE-AH
algorithms are developed based on the Neyman–Pearson
detection theory, a well-tuned false alarm probability PFA
is critical to their performance. In view of this, we tested
the efficacy of these two algorithms using the range of
PFA ∈ {10−3, 10−4, 10−5, 10−6}, so as to yield their best
performances. Moreover, the two MDL algorithms and the
GENE algorithm require a preset value of maximum possible
number of sources, which was set as Kmax = 16 for all three
algorithms. The mean and standard deviation of the detected
number of sources K̂ over the 50 independent realizations
are displayed in the top-left block of Table I, where each
boldface number denotes the best performance for a particular
SNR among the four algorithms under test.

Apparently, the two MDL algorithms can unsupervisedly
yield perfect estimates of the number of sources K̂ = 5
for each scenario under test. While the VD algorithm tends
to underestimate the number of sources, the GENE-AH
algorithm can yield a good estimate of the number of
sources with a properly selected PFA. Nevertheless, the
performance of GENE-AH appears to be sensitive to the
false alarm probability; actually, it can be verified that, for
given data, K estimated by GENE-AH gets smaller as PFA
decreases [18]. Note that the best setting of PFA is often
data-dependent and unknown ahead of time. The performance
of the two MDL algorithms, by contrast, does not sensitively
depend upon the proper tuning of any hyperparameters.

B. Synthetic Data With Nonisotropic Gaussian Noise

Next, we study robustness to nonisotropic noise for these
model order selection algorithms. To this end, we corrupted the
data x0[n] by nonisotropic Gaussian noise generated following
a standard procedure [18]. Specifically, the noise variance σ 2

i
for the i th observation (or the i th band) is given by [18]

σ 2
i = σ 2 exp(−(i − M/2)2/2τ 2)

∑M
j=1 exp(−( j − M/2)2/2τ 2)

, ∀i = 1, . . . , M

where σ 2 is defined by (23), and τ > 0 is a parameter that
controls the degree of nonisotropy of the noise. The larger
the value of τ , the more isotropic the noise becomes. When
τ = ∞, it corresponds to perfectly isotropic noise, i.e., the
scenario studied in Section V-A. The simulation results for
τ ∈ {30, 20, 10} in terms of the mean and the standard devia-
tion of the detected number of sources K̂ (over 50 independent
realizations) are displayed in Table I.

From Table I, one can observe that Wax’s MDL algorithm
tends to overestimate the number of sources K̂ as the noise



LIN et al.: DETECTION OF SOURCES IN NBSS BY MDL CRITERION 4029

TABLE I

MEAN ± STANDARD DEVIATION OF THE ESTIMATED NUMBER OF (DIRICHLET) SOURCES K̂ FOR TRUE K = 5, OVER 50 INDEPENDENT RUNS,
FOR VARIOUS MODEL ORDER SELECTION ALGORITHMS, WITH DIFFERENT VALUES OF SNR AND τ

(A MEASURE OF ISOTROPY OF THE NOISE DISTRIBUTION)

distribution gets more nonisotropic. It fails to correctly detect
the number of sources when the data are corrupted by highly
nonisotropic noise (i.e., τ = 10), even for the scenario of
high SNR = 15 (dB) (see the bottom-right block of Table I).
This should be partly attributable to the fact that Wax’s MDL
algorithm was developed without considering the “simplex
structure” of the nBSS data, making its performance rely
more on the isotropic noise assumption [26], and should
also be partly attributable to the fact that the synthetic data
are generated based on a Dirichlet distribution (instead of a
Gaussian distribution as assumed in [26]).

To be exact, Wax and Kailath [26] assumed that the
data x[n] simply follow a Gaussian distribution, based on
which the data cloud would configure as an ellipsoid. Alterna-
tively, by (A2), the data cloud would be expected to shape like
the simplex conv{a1, . . . , aK }, and hence it may be advisable
to incorporate a (linearly transformed) Dirichlet distribution
to depict how the data distribute on this simplex. Even
when the data are corrupted by nonisotropic noise, the noisy
data cloud may still preserve the simplex structure to some
degree.

Since our MDL algorithm takes this simplex structure into
account, it appears to be more robust against the nonisotropic
noise effect, except for the scenario of very low SNR and
highly nonisotropic noise [i.e., (τ, SNR) = (10, 0 dB)]. It is
worth mentioning that the convex geometry-based GENE-AH
algorithm is also devised under a framework wherein the
noiseless data are assumed to form a simplex (see [18]).
That is why its performance does not degrade too much
as the noise becomes more nonisotropic. The importance of
considering the simplex structure of the data when performing

model order selection will be further demonstrated next by our
experimental studies involving real data sets.

C. Synthetic Data From a Non-Dirichlet Source

We have assumed that the source vectors can be well-
modeled or approximated by a Dirichlet distribution. To under-
stand the efficacy of our MDL criterion when this hypothesis
is violated, we study the scenario where the synthetic data
are generated using non-Dirichlet sources. Specifically,
we follow the same data generation procedure as described in
Section V-A and corrupt the data by isotropic or nonisotropic
Gaussian noise as described in Section V-B. However, the
sources are obtained from K = 6 remote sensing images
(i.e., materials’ abundance maps [33]) as displayed in Fig. 2;
each image contains L = 100 ×100 pixels and represents one
of the rows in S ∈ R

6×10000 after vectorization. This set of
images has been widely used in generating synthetic remote
sensing data [59] and is regarded as a non-Dirichlet source
[38, Sec. IV.D].

The simulation results are summarized in Table II. For
the scenario with isotropic noise, the two MDL algorithms
perform best, and GENE-AH also works well if the false
alarm probability is properly chosen. For nonisotropic cases
(i.e., τ ∈ {30, 20, 10}), the proposed MDL criterion still
perfectly detects the number of sources, while GENE-AH
performs second best; for the highly nonisotropic case,
the VD algorithm and Wax’s MDL algorithm fail to cor-
rectly detect the number of sources. These simulation results
indicate that the proposed MDL criterion is potentially
insensitive to nonisotropic noise and non-Dirichlet sources.
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TABLE II

MEAN ± STANDARD DEVIATION OF THE ESTIMATED NUMBER OF (NON-DIRICHLET) SOURCES K̂ FOR TRUE K = 6, OVER 50 INDEPENDENT RUNS,
FOR VARIOUS MODEL ORDER SELECTION ALGORITHMS, WITH DIFFERENT VALUES OF SNR AND τ

(A MEASURE OF ISOTROPY OF THE NOISE DISTRIBUTION)

Fig. 2. Remote sensing images for generating non-Dirichlet sources, where
the kth image sk [defined below (1)] has L = 100×100 pixels and corresponds
to the kth row of S ∈ R

6×10000, ∀k = 1, . . . , 6.

However, to rigorously justify its robustness to nonisotropic
noise and non-Dirichlet sources, it may involve nontrivial
theoretical analysis that is left as our future research.

D. Real Benchmark Rat Cell Type-Specific Gene
Expression Data (RD1)

In this paper, we test the proposed MDL algo-
rithm on a benchmark gene expression data—known as
GSE19830 [37]—that is used for cell type-specific significance
analysis of microarrays from the rat genome. In particular,
it serves as a benchmark data set for analyzing the contribution
of each cell type to the total measured gene expression in a

given biological sample. The mathematical model for charac-
terizing this data set can be found in [37], which matches our
signal model (1) and is briefly next described.

This data set contains K = 3 sources, corresponding to
three different rat cell types—brain, liver, and lung [37]. There
are 11 biologically mixed heterogeneous samples, with three
replicates for each sample, resulting in a total of M = 33 chan-
nels in this data set. In each sample, there are L = 31042
probes; note that each gene may correspond to multiple probes.
Then, the i th entry of x[n] denotes the measured expression
value of probe n for sample i , and the i th entry of ak is
the mixing abundance of cell type k in sample i . Moreover,
sk[n] represents the gene expression measured from probe n
for cell-type k.

Obviously, there is no reason to require that the three gene
expressions (for brain, liver, and lung) measured by probe n
satisfy sbrain[n] + sliver[n] + slung[n] = 1, and hence full-
additivity is expected to be violated for most probes in this
data set. In view of this, we standardized this data set by the
technique given in Remark 2 (i.e., normalizing each column
of X), so as to enforce source full-additivity, before it was
processed by the proposed MDL algorithm. The description
length for this data set versus different values of K is shown
in Fig. 3, with model-order K = 3, yielding the shortest
description length. Hence, the proposed MDL algorithm has
correctly detected the number of sources K̂ = 3, even though
the corresponding Dirichlet distribution is estimated to be
nonuniform, i.e., α = [2.66, 1.70, 3.06]T . We also processed
this data set using Wax’s MDL algorithm, which detects
K̂ = 27 sources, grossly overestimating the ground-truth
value. One of the major reasons is that the noise powers for
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Fig. 3. MDL curve for real benchmark rat cell type-specific gene expression
data (GSE19830), where the detected number of sources is K̂ = 3.

different biologically mixed samples could be nonisotropic, as
alluded to in our simulation studies (see Section V-B). Another
is that Wax’s model does not capture the simplex structure that
may be intrinsic to the data. This shows that simply using a
Gaussian distribution is not sufficient to capture the character-
istic of this gene expression (nBSS) data. Furthermore, both
VD and GENE yield model-order estimates that are grossly in
error (for a wide range of PFA ∈ {10−1, 10−2, . . . , 10−6}), and
hence we do not even show their results. A recently developed
algorithm, called GLAD [60], also estimates the number of
cell types for this data set based on BIC; it gives a slightly
overestimated result of K̂ = 5.

E. Real Benchmark Human Blood Microarray Data (RD2)

Next, we test the proposed MDL algorithm on a benchmark
data set, termed GSE11058 [39], used for studying Systemic
Lupus Erythematosus (SLE) disease, a systemic autoimmune
disease. The immune systems of patients suffering from SLE
mistakenly attack healthy tissues and damage multiple organs.
The microarray expression deconvolution technique (MEDT)
has been applied to blindly analyze the SLE disease [39], but
correct model order selection is crucial for MEDT to reliably
characterize changes in mixed populations of blood cells. Let
us describe how the nBSS model (1) fits this data set [39].

In this data set, there are K = 4 constituent subpopulations
(i.e., sources) that correspond to four (phenotypically very
similar) transformed cell lines of immune origin in blood—
Raji (from B-cell), IM-9 (from B-cell), Jurkat (from T-cell),
and THP-1 (from monocyte) [39]. This data set contains
four sample profiles, each with three replicates, resulting in
M = 12 biologically mixed expression profiles of the four
subpopulations. Around a third of the probes, corresponding
to genes with too low or too high signal intensity, are reported
to be unreliable [29] and hence are eliminated from the data
set; finally, L = 35498 probes are retained in each sample
profile. Then, the i th entry of x[n] denotes the measured
microarray data from probe n in the i th biological sample

Fig. 4. MDL curve for real benchmark human blood microarray data
(GSE11058), where the detected number of sources is K̂ = 4.

profile, and the i th entry of ak is the mixing abundance of the
kth constituent subpopulation in the i th mixed sample profile.
Moreover, sk [n] is the expression level associated with probe
n for the kth subpopulation.

Since there is no literature supporting the validity of source
full-additivity for this data set, we again performed stan-
dardization before processing this data set by the proposed
MDL algorithm. The obtained MDL curve for this data set
is shown in Fig. 4; it successfully indicates the presence of
K̂ = 4 constituent subpopulations in the mixed biological
samples. Note that the estimated Dirichlet distribution is highly
nonuniform with α = [7.41, 7.93, 9.07, 9.08]T , but the
proposed nBSS-MDL criterion still successfully captures the
(presumably) embedded simplex structure of this data set.
We also performed model order selection for this data set using
Wax’s MDL algorithm, which incorrectly detected K̂ = 10.
Again, both VD and GENE yield model-order estimates that
are grossly in error for a wide range of PF A , and so their
results are omitted.

F. Real Benchmark Brain Disease-Related
Molecular Data (RD3)

Our next experiment is conducted on a benchmark data set,
whose accession code is GSE19380 [40], used for studying
brain molecular changes (or histological abnormalities) caused
by Huntington’s disease. Characterizing molecular changes in
the diseased brain plays a pivotal role in revealing pathophysi-
ological mechanisms and developing associated targeted drugs,
and this raises the so-called differential expression analysis
problem (DEAP) [40], where the very first task for DEAP is
to choose a correct model order in order to address a major
confounding factor called tissue heterogeneity. This problem is
caused by limited imaging resolution and can be modeled as an
nBSS problem, where (1) can be utilized for the mathematical
modeling of this data set as next discussed [40].

This data set is generated from K = 4 messenger
ribonucleic acids (mRNAs) (i.e., sources), which are neuronal
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Fig. 5. MDL curve for real benchmark brain disease-related molecular data
(GSE19380), where the detected number of sources is K̂ = 4.

mRNA, astrocytic mRNA, oligodendrocytic mRNA, and
microglial mRNA [40], and these reference mRNAs are
biologically mixed to generate M = 10 composite samples,
where there are L = 31042 probes in each sample. Here, the
i th entry of x[n] (w.r.t. the i th entry of ak) denotes the mea-
sured expression level of probe n (w.r.t. the mixing abundance
of the kth mRNA) for the i th mixed sample, and sk[n] stands
for the expression level of the kth mRNA from probe n.

We processed the standardized molecular data set using
our MDL algorithm, and the obtained description length is
shown in Fig. 5, where K = 4 yields the shortest description
length. Even in the presence of some impure samples [40]
and the estimated nonuniform Dirichlet distribution (α =
[5.92, 6.00, 5.42, 7.21]T ), our MDL algorithm still success-
fully determines the correct model-order for DEAP. However,
Wax’s algorithm again overestimates the number of sources
as K̂ = 8. Moreover, both VD and GENE yield meaningless
model-order estimates of K̂ = 0 for a wide range of PFA.

G. Real Benchmark Hyperspectral Remote
Sensing Data (RD4)

Our final experiment is conducted on a benchmark HRS data
set, taken over the Cuprite mining site, Nevada, in 1997 [41].
Analyzing HRS data has been challenging due to the limited
spatial resolution of the hyperspectral sensor (usually equipped
on satellites or aircraft), under which arises the so-called
hyperspectral unmixing (HU) problem, and correct model
order selection plays an important role in yielding meaningful
HU results [38]. The linear mixing model (1) can be used to
characterize this data set as next discussed [38].

We use the same region of interest (ROI) from this mining
site as used in [38], and for this ROI there are K = 9 minerals
present—Muscovite, Alunite, Desert Varnish, Hematite,
Montmorillonite, Kaolinite #1, Kaolinite #2, Buddingtonite,
and Chalcedony. This ROI is composed of 150 × 150 pixels,
but it contains ten outliers as reported in [38], so there
are L = 22490 pixels in this data set. On the other hand,
the hyperspectral sensor used to record this data set has

Fig. 6. MDL curve for real benchmark HRS data (collected from the Cuprite
mining site, Nevada), where the detected number of sources is K̂ = 9.

224 spectral bands, but with the bands 1–4, 107–114, 152–170,
and 215–224 reported to be corrupted by water-vapor
absorption, which hence were eliminated from the data
set [38]; so, a total of M = 183 bands were used in this
experiment. Then, the i th entry of x[n] denotes the measured
solar electromagnetic radiation in pixel n from the i th spectral
band, and ak is the spectral signature of the kth mineral.
Moreover, sk[n] represents the proportion of the kth mineral
present in pixel n [38]; source full-additivity has been
satisfied by nature—so there is no need to perform source
standardization in this case.

We performed model order selection for this data
set using our MDL algorithm, and the obtained MDL
curve is shown in Fig. 6. One can observe that it
successfully estimates the correct number of sources as the
description length attains the minimum at K = 9, while the
corresponding Dirichlet parameter vector is estimated as α =
[1.68, 2.44, 2.07, 2.65, 3.57, 2.68, 3.15, 3.71, 3.85]T .
Wax’s MDL algorithm again overestimates the number of
sources present in this data set as K̂ = 18. On the other
hand, we note that geometry-based model order selection
algorithms tend to underestimate K for this data set, due to
the high similarity among some spectral signatures ak , making
them not easily discernible. For instance, the signatures of
Kaolinite #1 and Kaolinite #2 hold high resemblance [38]
and the GENE-AH algorithm [18] underestimates the number
of minerals to be K̂ = 7, for all PFA ∈ {10−4, 10−5, 10−6}.

The above real experimental results were obtained by a
computer equipped with Core-i7-4790K CPU with 4-GHz
speed and 16-GB RAM. Let us conclude this section with a
summary of the performances and computational efficiencies
of the two MDL algorithms as shown in Table III. Though
Wax’s Gaussian modeling does allow very efficient MDL
calculation, it seriously overestimates the number of sources.
By contrast, though the proposed MDL requires greater com-
putational expense due to the complicated Gaussian–Dirichlet
convolution modeling, it correctly detects the number of
sources.
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TABLE III

ESTIMATED NUMBER OF SOURCES K̂ AND COMPUTATIONAL TIME

[IN SECOND (sec.) OR MINUTE (min.)], FOR THE FOUR REAL-WORLD
DATA SETS RD1 TO RD4 IN SECTIONS V-D TO V-G

VI. DISCUSSION AND CONCLUSION

We have devised a model order selection algorithm
for nBSS based on the MDL criterion, summarized in
Algorithm 1. Some noteworthy characteristics and concluding
remarks are as follows.

1) It employs the Gaussian–Dirichlet convolution model,
much more consistent with the simplex structure of
nBSS data than the Gaussian source model [26] con-
sidered in some prior works and hence should be more
suitable for model order selection for a variety of nBSS
domains.

2) It efficiently approximates ML parameter estimates
of the Gaussian–Dirichlet density by linking the
stochastic-oriented ML estimation problem to the
simplex geometry-oriented Craig estimator, with
the latter widely studied in the nBSS context.

3) We reformulated the high-dimensional integral
(appearing in the calculation of the code length)
into a form that can be efficiently approximated by
Monte Carlo integration.

4) We performed substantial experimental comparisons, not
only on simulated data sets but on multiple real-world
data domains, and in comparison with some of the most
well-known peer methods. Not only did we demonstrate
superior performance of the proposed method, but we
also demonstrated that the peer methods in general gave
wildly inaccurate estimates of the number of sources
present for the real-world data domains—thus it is
not simply a matter of achieving “better” results than
the peer methods (in fact, determining the true source
number, which the proposed MDL algorithm accom-
plished, on all the tested real-world domains). None of
the peer methods produced even remotely acceptable
results on the real-world domains that we considered
here.

5) For application domains where there is a natural
physically motivated parameterization of the mixing
matrix A ∈ R

M×K [28]–[30], an extension of the
method proposed here could be developed employing
such parameterization. However, we have demonstrated
here that for many practical application domains, where
M, K 
 L, and where there is no such obvious
parameterization, full representation of the mixing
matrix (and its estimation) does not prevent our method
from achieving accurate model order estimates.

6) In the future work, we can investigate development of
an approach that achieves locally optimal (rather than
approximate) ML estimates of parameters and seek to
identify scenarios where such optimal (but substantially
more computationally intensive) parameter estimation
is in fact needed to accurately estimate the number
of sources. Another important yet unresolved line is
to consider MDL-based model order selection in the
underdetermined scenario (i.e., M < K ), which appears
to be quite challenging.

APPENDIX

A. Proof of Corollary 1

The covariance matrix of the noiseless counterpart of x[n],
i.e., x0[n] � As[n], is given by

�x0[n] � E[(x0[n] − E[x0[n]])(x0[n] − E[x0[n]])T ]
= A �s[n] AT (24)

where �s[n] � E[(s[n] − E[s[n]])(s[n] − E[s[n]])T ] is the
covariance matrix of the random vector s[n]. By (3), it can
be verified that E[s[n]] = (α/α0) [34], and hence we have

�s[n] = E

[(
s − α

α0

) (
s − α

α0

)T
]

= 1

α2
0(α0 + 1)

· (α0 · DIAG(α) − ααT ) [34] (25)

where DIAG(α) is the diagonal matrix whose kth diagonal
element is αk . One can observe, from (25), that �s[n]
is a positive semidefinite (PSD) matrix with exactly one
zero eigenvalue (whose corresponding eigenvector is 1K ,
i.e., �s[n]1K = 0), implying that rank(�s[n]) = K − 1,
which, together with (A1), (24) and the Sylvester’s rank
inequality [44], yields rank(�x0[n]) = K−1. Finally, by further
noting that �x[n] = �x0[n] + σ 2IM and that �x0[n] is a PSD
matrix (i.e., the eigenvalues of �x0[n] are all non-negative),
we observe that the smallest eigenvalue of �x[n] is σ 2 with a
multiplicity of M − rank(�x0[n]) = M − (K − 1). Then, the
proof of Corollary 1 directly follows from (12). �

B. Proof of Lemma 1

By (3) and (A1), one can observe that the p.d.f. of x0[n] =
As[n] has a support of {As | s ∈ intTe}, which is exactly the
relative interior [36] of the convex hull conv{a1, . . . , aK } (by
the fact that Te = conv{e1, . . . , eK } [see (2)], namely

dom h = int conv{a1, . . . , aK }.
Moreover, one can infer from the full column rank of A that
the p.d.f. of x0[n] is proportional to the p.d.f. of s[n] =
A†x0[n] [by (A1) and x0[n] = As[n]], namely [by (3)]

h(y) ∝ Dir(A†y; α), ∀y ∈ dom h

and hence (6) follows. As w[n] is assumed to be a zero-
mean additive white Gaussian noise, its p.d.f. is given by (5).
Finally, by [56, Th. 6.1.1] and (1), the p.d.f. f (x|�(K )) of
x[n] is given by the convolution of the density of x0[n] and
the density of w[n], and therefore the proof of Lemma 1 is
completed. �
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C. Derivation of Approximate ML Estimation
for a1, . . . , aK

We begin by observing that as the function exp(−‖z‖2)
is a symmetric unimodal function centered at the origin and
decreases sharply as ‖z‖ increases, the exponential term in
the integrand in (14) looks like an impulse function cen-
tered at x[n], thereby leading to the following approximation
[see (3) and (6)]:
∫

y∈dom h
Dir(A†y; α) · exp

{−‖x[n] − y‖2

2σ 2

}
dy

≈
∫

y∈dom h
Dir(A†y; α) · VDirac · Dirac(y − x[n]) dy (26)

where Dirac(·) is the Dirac delta function [w.r.t. aff(dom h)],
and VDirac is the normalization constant for Dirac(·) defined
as

VDirac �
∫

y∈aff(dom h)
exp

{−‖x[n] − y‖2

2σ 2

}
dy

= (2πσ 2)
K−1

2 , if x[n] ∈ dom h (27)

in which the last equality can be verified from the fact that the
affine dimension of aff(dom h) = aff{a1, . . . , aK } is K − 1
[see (7) and (A1)]. Furthermore, under assumptions (A1) and
the source full-additivity 1T

K s[n] = 1 [by (A2)], the affine
hull of dom h can be approximately given by the (K − 1)-
dimensional affine hull that best fits the data cloud in the sense
of least-squares fitting error [11], namely

aff(dom h) ≈ A(C, d) � {Cx̃ + d
∣∣ x̃ ∈ R

K−1} (28)

where C is defined below (16), and d is defined in (11).
By (7) and (28), the condition “x[n] ∈ dom h ⊆ R

M ” can be
explicitly and approximately written in the lower-dimension
space R

K−1 as

“x[n] ∈ dom h” ≈ “x̃[n] ∈ conv{ã1, . . . , ãK }” (29)

where {
x̃[n] � C†(x[n] − d) ∈ R

K−1

ãk � C†(ak − d) ∈ R
K−1.

(30)

Since the affine set fitting in (28) also serves as noise suppres-
sion [11], we have the approximation of PA(C,d)x[n] ≈ x0[n],
where PA denotes the orthogonal projector on to the affine
hull A. Then, when x[n] ∈ dom h, we see that x[n] =
Paff(dom h)x[n] ≈ x0[n] [see the approximation in (28)],
i.e., A†x[n] ≈ A†x0[n] = s[n], from which, together with
(7) and (26)–(30) and the sifting property of the Dirac delta
function, i.e., f̃ (c) = ∫

y∈aff(dom h) Dirac(c − y) · f̃ (y) dy, we
have that
∫

y∈dom h
Dir(A†y; α) · exp

{−‖x[n] − y‖2

2σ 2

}
dy

≈
{

(2πσ 2)
K−1

2 · Dir(s[n]; α), if x̃[n] ∈ conv{ã1, . . . , ãK }
0, otherwise.

(31)

From (31), one can see that if x̃[n] /∈ conv{ã1, . . . , ãK }
for some n, the objective function of problem (15)

approaches −∞ [see (14)], preventing (15) from reaching its
maximum, and hence we can reasonably impose the constraint
x̃[n] ∈ conv{ã1, . . . , ãK } to the unconstrained maximization
problem (15). Then, by (14), (30), and (31), problem (15) can
be approximated as

max
ak

L · log(J (K , A)) +
L∑

n=1

log
{
(2πσ 2)

K−1
2 ·Dir(s[n]; α)

}

s.t. x̃[n] ∈ conv{ã1, . . . , ãK }, ∀n ∈ IL, (cf. (29))

ãk � C†(ak − d), for some ak ∈ A(C, d), ∀k ∈ IK .

(32)

Next, from (3), (6), and (8), one can verify that J (K , A) can
be expressed by the ratio of the volumes of two simplices,
conv{a1, . . . , aK } and T � conv{e1, . . . , eK−1, 0K } (note that
the integral of the Dirichlet density over T equals to one [34]);
to be precise, we have

J (K , A) = vol(conv{e1, . . . , eK−1, 0K })
vol(conv{a1, . . . , aK }) (33)

where

vol(conv{b1, . . . , bK }) � 1

(K − 1)!
√

det(BT B) (34)

in which B = [ b1 − bK , b2 − bK , . . . , bK−1 − bK ] ∈
R

M ′×(K−1) (here, M ′ ≥ K − 1, and {b1, . . . , bK } is an
affinely independent set). Then, by substituting (33) into (32),
using the approximation of vol(conv{a1, . . . , aK }) ≈
vol(conv{ã1, . . . , ãK }) (by (28), (30), and the fact that
C is semi-unitary), and dropping terms not dependent
on ak [note that the p.d.f. Dir(s[n]; α) ≈ Dir(A†x[n]; α)
is approximately inversely proportional to the volume of
its support, i.e., vol(conv{a1, . . . , aK })], the log-likelihood
maximization problem (15) can then be approximately and
explicitly expressed as the geometry-oriented simplex volume
minimization problem (16). �

D. Proof of Condition 1) in Theorem 1

By (1), (A2), the noiseless scenario and the observation
that Te = conv{e1, . . . , eK }, we can infer that x[n] ∈
conv{a1, . . . , aK }, that is

f (X|�(K )) = 0, if x[n] /∈ conv{a1, . . . , aK } for some n

indicating that the candidates of the ML estimates ak,ML,
∀k ∈ IK [i.e., solutions to (15)], must form a simplex that
encloses all the data points x[n], that is

x[n] ∈ conv{a1,ML, . . . , aK ,ML}. (35)

On the other hand, under circumstance of (35), it can be
inferred from (1), (6), and (33) that the likelihood function
of A, for a given noiseless observation matrix X, is given
by

L(A | X) =
L∏

n=1

J (K , A) · Dir(A†x[n]; α). (36)

By [61, Lemma 1], we have, in the noiseless case, that

A(C, d) = aff{x[1], . . . , x[L]} = aff{a1, . . . , aK } (37)
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which, together with (35), implies that the maximum of the
likelihood function in (36) can occur only when A satisfies
the constraints of problem (16). Hence, one can infer that
A†

MLx[n] belongs to the domain of the Dirichlet distribution
[see (A1), (3), and (2)]. Then, we have from the premise of
α = 1K that Dir(A†x[n]; α) = (K − 1)! [see (3)], which,
together with (33) and (36), yields that

L(A | X) ∝
(

1

vol(conv{a1, . . . , aK })
)L

. (38)

From (30), (37), and the fact that C is semi-unitary, we see

vol(conv{a1, . . . , aK }) = vol(conv{ã1, . . . , ãK }). (39)

Finally, combining (35), (37), (38), and (39), the problem
of maximizing the likelihood of L(A|X) [i.e., the ML
problem (15)] is equivalent to the problem of minimizing the
volume of the simplex conv{ã1, . . . , ãK } with the constraint
of (16) (i.e., the Craig simplex identification problem).
Therefore, the proof of Theorem 1 is completed. �
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